Inductor Magic
There's a legend in the music world that the sound of the old, original Vox Wahs with "Fasel" inductors is superior to what can be had from modern wahs. It turns out that there is some fact behind this legend. While it's clear that the other parts in a Vox Wah have something to do with the tone, the inductors have long been the subject of speculation. The wahs with Clyde McCoy's picture on the bottom plate and inductors marked "Fasel" are especially prized. I have a longstanding mistrust of any legendary mystical goodness that is not explainable by technical analysis, so I always wanted to test the magic inductor.
I was entrusted with one of the magic versions by a friend, and spent some time in an EE lab with this wah and a garden variety Crybaby. I took both inductors out and measured their inductance, resistance, self-capacitance, and came to no good conclusions on why there should be any difference in the sound. It wasn't until I put a sine wave generator through the inductor and looked at the current through the inductor on a spectrum analyzer that the differences showed up.
I saw no differences at first with tiny sine wave drives. It wasn't until I turned the generator up that differences appeared. The Crybaby inductor performed exactly as I would have expected it to. That is, it had an output that was essentially a pure sine wave right up until the sine was big enough or lowe enough in frequency to start it into the first touches of saturation. When that started, I got precisely what theory predicts: appearance of the third harmonic of the dirve waveform, followed by fifth, and finally a touch of seventh when I really pushed it. However, when I did the same to the Fasel inductor, the onset of saturation-generated harmonics happened a bit sooner, and a second harmonic appeared with the third! As I turned the drive up, the fourth rose with the fifth, and I never got a seventh harmonic. The inductor, all by itself was clipping asymmetrically.
I queried some older and wiser EE's who have spent a career on magnetics. We came to the conclusion that the only way this could happen was if the inductor core had some kind of magnetic offset in it, so one polarity of the waveform saturated earlier than the other. However, none of them had ever seen this in a signal inductor like the ones I was testing. The only good explanation was that the inductor core itself was carrying a magnetic offset, a whiff of permanent magnetism. This was mildly astonishing because that is something that linear ferrite cores are explicitly designed NOT to do.
The best explanation I could come up with is this. The inductor in the classic wah setups carries the DC bias current for the first transistor. While this is only microamps, long exposure to this unidirectional bias could result in a remanent magnetization of the inductor core if the core material was not very good in the classical, linear EE sense. It's possible that Vox merely specified the circuit, the maker (Jen, I think, in Italy) made the early wahs from as inexpensive a material as they could, and the slight deviation from linearity resulted in a sound that the folks at Vox liked. That is - it was a happy accident resulting from being cheap. I've never heard another explanation that accounts for the differences. There are differences, and measurable ones, and ones that square with reasonable explanations for how the thing works and sounds. This legend's true.